

Machine Learning for Neutrino Identification

Nitish Nayak NuSTEAM Workshop

Prerequisites

- Types of Neutrino Interactions ν_e CC , ν_μ CC, ν_τ CC, ν_χ NC
- LArTPC detectors
- What neutrino interactions look like
- Why would we want to identify different types?

Outline

- Curve fitting/Classification/Regression
- Gentle introduction to Neural Networks
- Predicting type of neutrino interactions in LArTPCs
- Hands-on demo

Types of ν -Interactions

- Different interactions look characteristically different
- Hadronic output (coming from the nucleus) broadly similar
- Interactions mainly differ in the nature of the final-state lepton
- Presence or absence of detected lepton tells us about type of interaction

Identifying Neutrinos

- Fundamental objective of any neutrino oscillation experiment
- Neutrinos change flavor, tagging flavor is crucial to understand what's happening
- We have an idea of how many ν_{μ} , ν_{e} we start off with from beam, identify and count how many there at FD => measure probability

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j}^{3} \Re(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta i}^{*})\sin^{2}(\frac{\Delta m_{ij}^{2}L}{4E_{\nu}}) + 2\sum_{i>j}^{3} \Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta i}^{*})\sin(\frac{\Delta m_{ij}^{2}L}{4E_{\nu}})$$

ν -Interactions in LArTPCs

- Broadly track-like or shower-like
- LArTPCs give us exquisite detail
- But mistakes can easily be made!

Issues to deal with

- Neutrino interactions are messy at our energies!
- A decision flow can be something like this:
 - If you identify a μ (usually a long, straight track) => $\nu_{\mu} CC$
 - If you identify an e (shower like) => $\nu_e CC$
 - If you don't see either => NC
- But :

- π^{\pm} are often long and straight too, can be confused as μ
- Other messy stuff
- We need automated tools to tell them apart! Can't sift through each one manually...

Curve Fitting

CURVE-FITTING METHODS AND THE MESSAGES THEY SEND

https://xkcd.com/2048/

- Teasing out relationships between observables
- Data is usually always noisy
- Often have to make assumptions about what its supposed to look like: linear, quadratic, something fancy etc.
- Not always easy to justify!

Parametric Fitting

•
$$y = f(\overrightarrow{x}, \overrightarrow{\theta})$$

• Eg :
$$y = ax^2 + bx + c$$
, where $\overrightarrow{\theta} \equiv (a, b, c)$

- Choose $\overrightarrow{\theta}$ based on some measure denoting how good/bad the fit is ("loss function")
 - Eg: $\overrightarrow{\theta}$: min $|\hat{y} f(\overrightarrow{x}, \overrightarrow{\theta})|^2$ ("least square distance")
- Overfitting:
 - Can be caused by having too many parameters (d.o.f) describing lowdimensional data
 - Fits well to given noisy data but doesn't generalize!

https://xkcd.com/1725/

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

- Teasing out relationships between observables
- Data is usually always noisy
- Potential for spurious, nonsense results if not careful!

Wire Noise Level in MicroBooNE

- But how to choose parametric form? Need to carefully assess which one works for given problem and what assumptions are being made
- Problem becomes worse when working with high-dimensional data and no reason to believe a parametric form even exists
 - Eg: Predict how movies are going to perform based on various inputs (choice of actors, marketing budget, script etc)
- Sophisticated techniques that are automatically able to "learn" what's best. Can predict with astounding accuracy in many cases
- More complexity \implies automatically better! Still prone to overfitting, biases, bad assumptions etc

Regression vs Classification

- Regression Predict a continuous variable, for eg. the energy of the neutrino that interacted in the detector
 - Parametric methods: Find $\overrightarrow{\theta}$: min $|\hat{y} f(\overrightarrow{x}, \overrightarrow{\theta})|^2$: Choice of f can be pre-determined or automatically "learnt"
 - Complex problems require complex f, often very non-linear
- Classification Predict one of many possible discrete labels, for eg. ν_e CC , ν_μ CC, ν_τ CC, ν_χ NC
- Classification is also curve-fitting in a way!

- Now, we want f and $\overrightarrow{\theta}$ that best <u>discriminates</u> between data coming from different labels
 - "Decision boundary"
- Essentially a regression problem for the probability of given data to belong to one label or the other
- Again, f can be relatively simple or highly complicated depending on context
- Involves another loss-function that minimizes
 "probability error", can be least-squares as before

Neural Networks

- For a neuron in the 2nd layer, calculate its response as:
 - $a_0^{(1)} = \sigma(w_{0,0}a_0^{(0)} + w_{0,1}a_1^{(0)} + w_{0,2}a_2^{(0)} + \dots + w_{0,n}a_n^{(0)} + b_0)$
 - Where $a_i^{(0)}$ represents the value of the i^{th} neuron in the 0^{th} layer
 - $w_{0,i}$ represents the strength of the connection between $a_0^{(1)}$ and $a_i^{(0)}$ ("weights")
 - b_0 is a bias parameter
 - σ is a so-called activation function, designed to ensure values in each neuron are within a certain range, for eg between (0, 1) typically for classification

- Essentially devices that can spit out arbitrarily complex functions in many dimensions
- Network of "neurons" to mimic structure of human brain
- Consider for eg, input 28x28 (=784 pixels) image where each pixel has a number b/w (0, 1) denoting how bright that pixel is
- The neurons (1 for each pixel) in the first ("input") layer can just be "brightness" values in that pixel

- In our eg, the final ("output") layer has 10 neurons
 - 1 for each digit we want to predict (0-9) based on input image of 784 pixels
- Lets assume 2 hidden layers, each with 16 neurons

• =>
$$(784*16 + 16*16 + 16*10) = 12960 w$$
 parameters ("weights")

- => (16 + 16 + 10) = 42 b parameters ("biases")
- Total = 13002 parameters
- Find w and b values such that we get the best predictions
- Curve fitting in 13002 dimensions!

Training

- Process of finding best w and b values referred to as "training the network"
- What do we mean by "best"?
 - For some w and b, each neuron in output layer contains value between (0, 1)
 - A probability measure denoting how confident the network is about the input image corresponding to that label
 - Can define loss function exactly as before ("least-squares") as

$$L(w,b) = \sum_{i=0}^{9} (\hat{y}_i - o_i(w,b))^2 \text{ and minimize this}$$

Why so complex?

- Our brains can easily recognize patterns/digits even if the images were a bit fuzzy
- But its a hard problem! We need ~13000 parameters to be able to describe arbitrary decision boundary shapes
- Could imagine the neural network decision flow as:
 - 2nd layer of neurons detect edges of image where pixels are bright
 - 3rd layer of neurons combines these edge pixels in various shapes, for eg loops or lines
 - Final layer might try to correlate number of loops or lines to the actual digits, for eg, 2 loops 0 lines => label "8" etc
- As we feed in more data during the training phase to optimize the loss function, network can get better and better at figuring out these patterns

Gradient Descent

- Algorithm to minimize loss-function, L(w, b) and find best w, b
- L(w,b) has 13,002 input parameters but outputs a single number
- Finding a minimum for such a function is also complicated!
- Gradient descent "ball rolling down a hill"
- Non-convex optimization : not guaranteed to find global minimum
- Try starting the ball at different starting points. Also "stochastic GD" try to make ball jump across valleys

What's the takeaway

- Forced to deal with complexity
 - Large dimensionality, unknown parametric relationships
- Overfitting: network starts to predict based on spurious features it learns from training data
 - For eg, it might decide the digit in image on particular handwriting styles and not generalize to other styles — "bias"
 - But its hard to know what it learns! ~Black box
- We never assess network performance on training dataset
- Always keep a fraction of data separate and then see how trained network performs ("Test dataset")
 - If training errors are very different from test errors, we may have issues
- Also good practices, shuffling dataset before training, crossvalidation, i.e change up training and test data for different iterations
- Playing around with GD parameters etc

Neutrino Flavor Tagging

- Classification problem
- We use "deep neural networks", particularly a brand called convolutional neural networks
 - Trained on ~6 million total events across ν_e CC , ν_μ CC, ν_τ CC, ν_χ NC

- $\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$
- ~22 million parameters (>> 13000!), "softmax" activation function to squish neurons to b/w (0, 1)
- Trained for a week using Nvidia GPU clusters. Actually, most modern GPUs can handle these kinds of payloads but sometimes need more than 1
- Three input images, each $500 \times 500 = 250,000$ pixels
- Output is a score b/w (0, 1) for each of 4 flavor labels : ν_e CC , ν_μ CC, ν_τ CC, ν_τ NC. Also has scores for other features of interaction

Why Deep?

- Previously, traditional approaches involve using set of human-engineered features as input, even to a shallower neural network
 - Examples of useful features for our problem: number of showers, gap from vertex, number of tracks
- Deep neural networks are able to figure these out themselves and their increasing depth also allows them to catch features we may have missed
 - We get more accurate networks, but possibly at the cost of not knowing as much about what its doing.
 - Validation is key to building trust! If established, we can reap the benefits
- Again, context is key. Sometimes it pays to build a less complicated network active area of research

- Extracted features end up looking a bit like this
- Pretty abstract, hard to interpret
- Training process is actually done over multiple iterations
- Works something like this:
 - Split dataset into 90% "training", 10% "test". Don't touch test dataset until after all the training is done
 - For each iteration ("epoch"), further split "training" into 80% actual training, 10% validation dataset after shuffling randomly
 - Feed the 80% into neural network in batches of 64, evaluate lossfunction for each batch
 - Tune w, b after each batch using Gradient Descent
 - Once all the 80% dataset is exhausted, evaluate result on validation dataset ("accuracy", "loss")
 - Now re-shuffle the 90% again into a different training and validation set and start all over again

- Dashed is on training dataset, solid is on validation dataset
- Notice we haven't even touched the remaining 10% test dataset
 - This is because we've been using information from the validation set to inform the training
 - To stay truly unbiased, we need to finally evaluate on events the network has never seen
- For now, we stop training when things stop improving after a few epochs/iterations
- Notice also that it flatlines this is a good sign that there's no overfitting!
- If we're confident the training went well, we can then look at the test dataset and assess the performance and see if we get similarly accurate results

Lets test things out!

- As a demo, we will test out the CNN network used in [https://journals.aps.org/prd/abstract/10.1103/ PhysRevD.102.092003]
- We can do all this on the browser itself, hopefully without having to install anything
 - Go to https://colab.research.google.com/
 - In the pop-up, go to the GitHub tab and type in url: https://github.com/nitish-nayak/dune-cvn
 - You should see two .ipynb files (Python notebooks)
 - Select "dune_cvn_nusteam.ipynb"

Further Reading/Homework

- Borrowed heavily from 3Blue1Brown's excellent neural network explainer:
 - https://www.3blue1brown.com/topics/neural-networks
 - Youtube playlist: https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1 67000Dx ZCJB-3pi
- Other references:
 - https://towardsdatascience.com/a-visual-introduction-to-neural-networks-68586b0b733b
 - https://towardsdatascience.com/artificial-neural-networks-for-total-beginners-d8cd07abaae4
 - https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6
 - https://www.youtube.com/watch?v=YRhxdVk_sls
- Build and train your own CNN:
 - https://github.com/josephlee94/intuitive-deep-learning/blob/master/Part%202:%20Image%20Recognition%20CIFAR-10/Coding%20Companion%20to%20Intuitive%20Deep%20Learning%20Part%202%20(Annotated).ipynb
 - https://medium.com/intuitive-deep-learning/build-your-first-convolutional-neural-network-to-recognize-images-84b9c78fe0ce